人教版小学美术三年级上册《我设计的自行车》教案
课题:
课时:
2课时
课堂类型:
造型表现设计应用
1、通过对自行车结构,功能的初步认识,指导学生设计自行车的草图,或运用各种综合材料创作自行车。
2、引导学生富有创意的运用各种类型的材料,在创作在体验设计自行车美感,在创作与探索中,捕捉创作灵感,逐步形成创造性的构思。
3、通过讨论交流,相互启发,培养学生的动手能力和创新精神。
教学重难点:
1、把自己有新意的自行车的设计想法,用绘画的方法画出设计草图。
2、创造性的利用各种材料,设计制作出有新意的自行车。
绘画工具
一、组织教学:
检查学生用具准备情况
二、讲授新课:
1、引导阶段
在学生设计自行车之前,先让学生欣赏一些自行车的图片,主要是让学生简单了解自行车的结构,最好能向学生介绍一下自行车的发明过程。
要求学生开展积极的讨论,在边讨论边构思在逐步形成自己的设计灵感,培养学生的创新精神。
2、发展阶段
启发学生从自行车的功能出发,进行设计构思,在造型设计上可以借助自然界物体的外形进行改装,或是想象中的抽象造型。
指导学生在设计自行车的草图时,相互讨论,相互补充,使设计的草图更完美。
三、学生作画,教师辅导:
1、当学生在设计的过程中,老师积极肯定学生好的有创意的造型,对有个性的表现给予及时表扬。
2、指导学生在制作自行车时,注重自行车整体造型的美观,同时让学生体验造型的艺术魅力。
四、课后拓展:鼓励学生课后找各种材料,如:丝带,毛线,铅丝,铅笔,碎花布等,积极尝试,表达自己的丰富多彩的想象,设计出更有创意,更美观的自行车。
拓展阅读
1、最新人教版小学五年级上册数学教案
1、结合具体情境,经历自主解决问题、学习带小括号的三步混合运算顺序的过程。
2、会进行带小括号的三步混合运算,会解决稍复杂的应用问题。
3、在解决问题的过程中,能进行有条理的思考,能表达解决问题的思路和过程。
教学环节师生活动设计意图
一、创设情境
二、解决问题
三、混合运算
四、尝试应用
五、课堂练习
1、师生通过在公园里划船的经历引出问题情境。
2、让学生读题并观察情境图,了解数学信息。
1、提出要解决的数学问题,鼓励学生尝试解决。
3、交流解题思路和算法,鼓励学生大胆展示自己的方法。
4、鼓励学生尝试列出综合算式。
5、交流、讨论写出的综合算式,让学生说一说是怎样想的,每一步求的是什么。
6、讨论:为什么要加括号?使学生了解三步混合运算和两步混运算一样,先算括号里面的,再算括号外面的。
7、让学生说一说运算顺序,再独立计算,然后全班交流。
学生独立完成练习题由学生划船的经历引出本课内容,学生很感兴趣,而且感受到数学与生活的联系。
让学生了解情境图中的活动作好铺垫。
给学生创造用已有的知识解决问题的空间,使学生经历自主解决问题的过程,培养自主学习的能力。
给学生充分展示自己的做法的机会,获得自主解决问题以及展示自我的快乐。体验算法多样化,考查学生能否进行有条理的思考,能否表达解决问题的思路和过程。
在分步计算的基础上尝试列出综合算式,让学生经历自主建构混合运算式题的过程。
交流列出的混合算式,是学生形成三步混合运算技能的过程。
在两步混合运算知识背景下,经历学习带小括号的三步混合运算顺序的过程,理解掌握小括号的作用和重要性。
通过说运算顺序和自主计算,掌握带括号的三步混合运算的运算顺序。
2、最新人教版小学五年级上册数学教案
1 知识与技能:
让学生结合具体情境认识行与列,初步理解数对的含义;
能在具体情境中用数对表示物体的位置。
2过程与方法:
使学生经历从已有经验到用数对确定物体位置的探索过程,体验用数对确定位置的必要性和简洁性。
3 情感态度与价值观 :
渗透“数形结合”的思想,发展学生的空间观念。
体会生活中处处有数学,产生对数学的亲切感。
教学重难点
经历用数对确定物体位置的探索过程,知道用数对表示位置的方法。
灵活运用数对知识解决实际问题。
多媒体设备
教学过程设计
1 创设情境,激趣导入
【师】课件出示多媒体教室上课情境图。
【师】这是上多媒体课的情景,每一个同学都有一个单独桌子,教室的前面 是一个控制台,控制台的左下方是一个座位表。如果哪个同学有问题要问老师,只要按一下秘书桌上的按钮,座位表上相应位置的红灯就会点亮,老师就知道谁要发言。
【师】播放动画。这时,红灯亮了,是谁提问了呢?
【生】(看课件中红灯亮的位置)是张亮在提问。
【师】那同学们,你们想知道哪一位同学是张亮吗?那们就来找一找吧。
这节课我们就一起来进一步学习“确定位置”。
【板书】第二章 位置 第1节 确定位置
2 探索新知
[1]寻找张亮的位置
【师】课件展示多媒体教室全景大图,请同学们仔细研究座位表和同学们座位间的关系,找一找哪一位同学是张亮。可以看教材19页,在教材上标出张亮同学的位置。
【生】在教材上寻找张亮的位置。
【师】说一说,你是怎么知道这就是张亮呢?
【生】红灯亮的是第二列第三行,学生座位中第二列第行的就是张亮。
[2]明确行列的含义
【师】张亮是在第二列第三行吗?
【课件展示】同在数学上竖排叫“列”,横排叫“行”。 “列”习惯上从左往右数,依次为第1列、第2列…… “行”习惯上从前往后数,依次为第1行、第2行……
【师】同学们,张亮是在第二列第三行吗?
【生】是。
【板书】(第2列、第3行)
[3]认识数对
【师】为了表示方便,表示位置我们还可以用“数对”来表示。括号中第一个数字表示列,第二个数字表示行,中间用逗号隔开。张亮在第2列、第3行的位置,可以用数对(2,3)表示。
【师】根据描述的习惯,你认为括号里这两个数各表示什么?
【生】括号里的第一个数表示第几列,第二个数表示第几行。
【板书】(2,3)
[4]用数对表示位置
【师】你能用数对来表示王艳同学的位置吗?
【生】王艳的位置用数对表示是(3,4)。
【师】括号里的3和4表示什么呢?
【生】3表示王艳在第三列,4表示在第四行。
【师】你们能不能用数对表示赵雪的位置呢?
【生】赵雪在第四列第三行,用数对表示是(4,3)。
【师】括号里的4和3表示什么呢?
【生】4表示赵雪在第四列,3表示在第三行。
【师】赵雪的位置能用数对(3,4)表示吗?
【生】不能,赵雪的位置在第四列第三行,而第三列第四行的位置是王艳。
【师】看来,数对(3,4)和(4,3)不仅是数的顺序不同,它们表示的位置也不同,所以我们用数对表示位置的时候,一定要遵循规则,数对前面的数字表示——列,后面的数字表示——行。
巩固练习:请同学们利用刚才所学的知识写一写孙芳,周明,李小冬的位置。
指定一个学生上白板上写。
[5]巩固确定位置的方法
1、先说一说自己班里,哪是第一列,哪是第一行,并让学生用数对表示自己的`位置。指多名学生回答,加强数对练习。
2、老师说数对,学生根据数对找出相应的同学。
[6]巩固拓展
【师】生活中还有很多用两个数来确定位置的情况,你知道有哪些吗?
【生】举生活中用数对确定位置的例子。
【课件展示】1、楼宇案例门上表示几层几号的按钮。
2、电影院里的座位——几排几号
3、象棋棋盘
[7] 课堂练习
1、用数对(3,2)表示。你能用数对表示其他几个图案的位置吗?
参***:
苹果用数对表示(4,3);西瓜用数对表示(2,1);香蕉用数对表示(4,1);樱桃用数对表示(2,3)。
2、下图是国际象棋。
(1)她是怎样确定棋子位置的?
(2)你能像她那样说一说每个棋子的位置吗?
参***:白方的“王”从左向右数在“e”列,从下往上数在“1”行,所以用数对表示为(e,1)。
[8]课堂小结(PPT投影)
【师】同学们,这节课我们学习了确定物体位置的方法,相信同学们一定大有收获,谁来说一下收获呢?
【生】我学会了怎样用数对表示位置。
我知道了数对中第一个数表示列,第二个数表示行。
我知道竖排叫列,一般从左往右数,横排叫行,一般从前往后数。
板书
第二章 位置 第1节 确定位置
(第2列、第3行)——(2,3)
(4,3)
列 行
竖排叫列,一般从左往右数
横排叫行,一般从前往后数
3、最新人教版小学五年级上册数学教案
1、经历猜测、实验、数据整理和描述的过程,体验事件发生的可能性。
2、知道事件发生的可能性是有大小的,能对一些简单事件发生的可能性做出预测,并阐述自己的理由。
3、积极参加摸棋子活动,在用可能性描述事件的过程中,发展合情推理能力。
一、创设情境
师生谈话,由围棋子是什么颜色的引出把6个黑棋子,4个白棋子放在盒子中和“说一说”的问题,让学生发表自己的意见。
(设计意图:由围棋子是什么颜色的问题引入学习活动,既调动学生学习的兴趣,又是摸棋子活动的准备。)
二、摸棋子实验A
1、教师提出摸棋子的活动和用“正”字记录黑白棋子的出现次数的要求,全班同学轮流摸棋子。
(设计意图:学生猜并摸出棋子,亲身感受事件发生的不确定性。)
2、交流学生统计的情况,把结果记录在表(一)合计栏。
(设计意图:使学生经历收集整理的过程,为下面的交流作铺垫。)
3、提出:观察全班摸棋子的结果,你发现了什么?让学生充分发表自己的意见。
(设计意图:从全班统计结果的描述中,感受统计的意义,为体验可能性的大小积累直观经验和素材。)
三、摸棋子实验B
1、提出:如果把盒子中的棋子换成9个黑的,1个白的,会出现什么结果?学生发表意见后,全班进行摸棋子实验。然后整理统计记录。(设计意图:改变事物的条件,让学生猜测,再摸,发展学生的数学思维和合理推理能力,获得愉快的学习体验。)
2、让学生观察描述统计结果。
然后提出:谁能解释一下,为什么这次摸出黑色棋子多呢?鼓励学生大胆发表自己的意见。
(设计意图:在观察描述摸棋子结果的过程中,感受摸棋子实验的意义,初步体验摸出什么颜色的棋子的次数和盒子中放的这种颜色的棋子个数有关系。)
四、摸棋子实验C
1、提出:如果把盒子中的棋子换成1个黑的,9个白的,让学生猜一猜摸中哪种颜色棋子的次数多,再摸。然后整理统计结果,填在表(三)合计栏中,并和大家猜的结果进行比较。
(设计意图:在学生已有活动经验的背景下,进行猜测、实验,发展学生的合理推理能力,激发参与活动的兴趣。)
2、提出:谁能解释一下,为什么这次摸出白色棋子多呢?鼓励学生大胆发表自己的意见。
(设计意图:在两次实验结果的分析比较中,再次体验到,摸中哪种颜色的棋子的可能性和放入盒子里这种颜色棋子的个数有关系。)
五、可能性大小
1、提出“议一议”的问题,让学生讨论:摸中哪种颜色的棋子的次数跟盒子中棋子个数有关系吗?得出盒子中哪种颜色的棋子多,摸中的次数就多,反之就少。
(设计意图:在亲身实验的基础上,认识盒子中放棋子的情况和摸棋子结果的关系。)
2、教师介绍可能性大小的含义。鼓励学生用可能性大小描述实验的结果。
(设计意图:理解可能性大小的部分意义,学会用可能性大小描述实验结果。)
六、课堂练习与问题讨论
学生独立完成练习。
4、最新人教版小学五年级上册数学教案
解方程:教材P69例4、例5。
1.巩固利用等式的性质解方程的知识,学会解ax±b=c与a(x±b)=c类型的方程。
2.进一步掌握解方程的书写格式和写法。
3.在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。
理解在解方程过程中,把一个式子看作一个整体。
理解解方程的方法。
一、导入新课
我们上节课学习了解方程,这节课我们来继续学习。
师:(出示教材第69页例4情境图)你看到了什么?
生:有3盒铅笔和4只铅笔,一盒铅笔盒中有x支铅笔。
师:你能根据图列一个方程吗?
生:3x+4=40。
师:你是怎么想的?
生:一盒铅笔盒有x支铅笔,3盒铅笔盒就有3x支铅笔。据此,可列出方程。
师:说得好,你能解这个方程吗?
学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的困惑。学生可能会疑惑:方程的左边是个二级运算不知识如何解。也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)
师:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?
生:先算出3个铅笔盒一共多少支,再加上外面的4支。
师:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?我们可以先把“3x”看成一个整体。
让学生尝试继续解答,教师根据学生的回答,板书解题过程。也可以让学生同桌之间再说一说解方程的过程。
师:(出示教材第69页例5)你能够解这个方程吗?
生1:我们可以参照例4的方法,先把x-16看作一个整体。
学生解方程得x=20。
生2:我们也可以用运算定律来解。
师:2x-32=8运用了什么运算定律?
生:运用了乘法分配律。然后把2x
看作一个整体。
学生解方程得x=20。
师:你的解法正确吗?你如何检验方程是否正确?
生:可以把方程的解代入方程中计算,看看方程左右两边是否相等。
三、巩固练习
教材第69页“做一做”第1、2题。
第1题的形式、内容都与例4基本相同。第2题的4个方程在两道例题的基础上略有变化,使学生学会举一反三。
这两道练习要让学生独立完成,教师可提醒学生解一题,代入检验一题,以促进检验习惯的养成。
四、课堂小结
1.在解较复杂的方程时,可以把一个式子看作一个整体来解。
2.在解方程时,可以运用运算定律来解。
五、布置作业
教材第71页“练习十五”第6、8、9.题。
转载请注明出处:https://www.31th.cn/articles/8609.html